beta-Helix is a likely core structure of yeast prion Sup35 amyloid fibers.

نویسندگان

  • Aiko Kishimoto
  • Kazuya Hasegawa
  • Hirofumi Suzuki
  • Hideki Taguchi
  • Keiichi Namba
  • Masasuke Yoshida
چکیده

We have studied the core structure of amyloid fibers of yeast prion protein Sup35. We developed procedures to prepare straight fibers of relatively uniform diameters from three kinds of fragments; N (1-123), NMp (1-189), and NM (1-253). X-ray fiber diffraction patterns from dried oriented fibers gave common reflections in all three cases; a sharp meridional reflection at 4.7A, and a diffuse equatorial peak at around 9A, apparently supporting the typical "cross-beta" structure with stacked beta-sheets proposed for many different amyloid fibers. However, X-ray fiber diffraction from hydrated fibers showed the meridional reflection at 4.7A but no equatorial reflections at 9A in all three cases, indicating that the stack of beta-sheets in dried fibers is an artifact produced by drying process. Thus, the core structure of these amyloid fibers made of the N domain is likely to be beta-helix nanotube as proposed by Perutz et al.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strain-specific sequences required for yeast [PSI+] prion propagation.

Amyloid polymorphism underlies the prion strain phenomenon where a single protein polypeptide adopts different chain-folding patterns to form self-propagating cross-beta structures. Three strains of the yeast prion [PSI], namely [VH], [VK], and [VL], have been previously characterized and are amyloid conformers of the yeast translation termination factor Sup35. Here we define specific sequences...

متن کامل

An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated beta-sheet structure for amyloid.

X-ray diffraction and other biophysical tools reveal features of the atomic structure of an amyloid-like crystal. Sup35, a prion-like protein in yeast, forms fibrillar amyloid assemblies intrinsic to its prion function. We have identified a polar peptide from the N-terminal prion-determining domain of Sup35 that exhibits the amyloid properties of full-length Sup35, including cooperative kinetic...

متن کامل

Q-Rich Yeast Prion [PSI+] Accelerates Aggregation of Transthyretin, a Non-Q-Rich Human Protein

Interactions amongst different amyloid proteins have been proposed as a probable mechanism of aggregation and thus an important risk factor for the onset as well as progression of various neurodegenerative disorders including Alzheimer's, Parkinson's, Huntington's, and Amyotrophic Lateral Sclerosis. Evidences suggest that transthyretin (TTR), a plasma protein associated with transthyretin amylo...

متن کامل

Probing the role of PrP repeats in conformational conversion and amyloid assembly of chimeric yeast prions.

Oligopeptide repeats appear in many proteins that undergo conformational conversions to form amyloid, including the mammalian prion protein PrP and the yeast prion protein Sup35. Whereas the repeats in PrP have been studied more exhaustively, interpretation of these studies is confounded by the fact that many details of the PrP prion conformational conversion are not well understood. On the oth...

متن کامل

Interaction of Human Laminin Receptor with Sup35, the [PSI+] Prion-Forming Protein from S. cerevisiae: A Yeast Model for Studies of LamR Interactions with Amyloidogenic Proteins

The laminin receptor (LamR) is a cell surface receptor for extracellular matrix laminin, whereas the same protein within the cell interacts with ribosomes, nuclear proteins and cytoskeletal fibers. LamR has been shown to be a receptor for several bacteria and viruses. Furthermore, LamR interacts with both cellular and infectious forms of the prion protein, PrP(C) and PrP(Sc). Indeed, LamR is a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical and biophysical research communications

دوره 315 3  شماره 

صفحات  -

تاریخ انتشار 2004